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A novel hybrid fitting energy-based active contour model in the level set framework is proposed. The
method fuses the region and boundary information of the target to achieve accurate and robust detection
performance. A special extra term that penalizes the deviation of the level set function from a signed
distance function is also included in our method. This term allows the time-consuming redistancing
operation to be removed completely. Moreover, a fast unconditionally stable numerical scheme is introduced
to solve the problem. Experimental results on real infrared images show that our method can improve target
detection performance efficiently in terms of the number of iterations and the wasted central processing
unit (CPU) time.
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Since the introduction by Kass et al.
[1], active contour

ideas have been widely used in the computer vision field.
Active contours can obtain smooth and closed contours
to locate target boundaries with subpixel accuracy, a
capability usually impossible in traditional methods[2,3].
Existing active contour methods can be roughly divided
into two categories: edge-based methods[4,5] and region-
based methods[6,7]. Edge-based methods use an image
local gradient to drive the curve evolution process, which
is usually sensitive to noise and weak edges commonly
found in infrared imaging. On the other hand, instead
of employing gradient information, region-based meth-
ods usually utilize certain statistical region information,
such as intensity, color, and texture, to capture targets of
interest. Both methods have advantages and disadvan-
tages. When the imaging conditions are fine, the targets
will appear with clear edges. In this case, the edge-based
approach alone can achieve good detection results. How-
ever, when the opposite imaging conditions occur, uti-
lizing the region-based method has more potential for
success. Inspired by this phenomenon, in this letter, we
propose a so-called hybrid fitting energy model to im-
prove target detection performance utilizing both global
image information and local image information.

We introduce the fitting term of Chan et al.[6] as our
regional fitting term and formulate it in terms of level
set function φ (x, y) as

Region (φ) =λ1 ·

∫∫

Ω

|Image (x, y) − Meanin|
2

H [φ (x, y)] dxdy

+ λ2 ·

∫∫

Ω

|Image (x, y) − Meanout|
2

{1 − H [φ (x, y)]}dxdy, (1)

where λ1 and λ2 are positive constants, φ is the level set
function with its zero level set corresponding to the evo-
lution curve, H(φ) is the one-dimensional (1D) Heaviside

function with H(φ) = 1 if φ > 0 or H(φ) = 0 if φ < 0,
Image is the given image, and Meanin and Meanout are
the intensity averages of Image(x,y) in φ > 0 and φ < 0,
respectively.

Based on the geodesic active contour (GAC) model[4],
we introduce the following weighted curve length as our
edge fitting term:

Edge(φ) =

∫∫

Ω

g[|∇Image(x, y)|] · |∇H [φ(x, y)]|dxdy, (2)

where g is the boundary feature map related to the im-
age gradient (g can be a decreasing function such as
g = exp(−η|∇Image|2) or g = 1/(1 + η|∇Image|2) with
η controlling the slope).

For a more accurate computation involving the level
set function and its evolution, we need to regularize the
level set function by penalizing its deviation from a signed
distance function[8], which is characterized by

Penalize(φ) =

∫∫

Ω

1

2
(|∇φ| − 1)2dxdy. (3)

As in many typical level set methods, we need to regu-
larize the zero level set by penalizing its length to derive
a smooth contour that is as short as possible during evo-
lution:

Length(φ) =

∫∫

Ω

|∇Hφ(x, y)|dxdy

=

∫∫

Ω

δ[φ(x, y)]|∇φ(x, y)|dxdy, (4)

where δ (φ) is the 1D Dirac measure defined as δ (φ) =
d
dφ

H(φ).

Hence, our hybrid fitting energy functional can be for-
mulated as

Energy = α · Region(φ) + β · Edge(φ)

+ µ · Penalize(φ) + ξ · Length(φ), (5)
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where α, β, µ, and ξ are weighting coefficients to balance
the contribution of each term.

Keeping Meanin and Meanout fixed and minimizing the
entire energy functional Energy with respect to φ, we de-
duce the associated Euler-Lagrange equation for φ as

∂φ

∂t
=α · δ(φ)[−λ1(Image − Meanin)

2

+ λ2(Image − Meanout)
2]

+ β · div
(

g
∇φ

|∇φ|

)

+ µ · div
[(

1 −
1

|∇φ|

)

∇φ
]

+ ξ · δ(φ)div
( ∇φ

|∇φ|

)

. (6)

An explicit scheme is the most popular method for solv-
ing Eq. (6). However, due to the Courant-Friedreichs-
Lewy (CFL)[9] condition, which asserts that numerical
waves should propagate at least as fast as physical waves
so that the curve can move only a small distance in each
iteration, this requires a very small time step. Thus,
if the curve is not near the edge of object of interest,
the curve may take a long time to reach the final posi-
tion. To remove the restriction on time step and obtain
fast convergence, we introduce the fast additive operator
splitting (AOS)[10] scheme to solve the terms marked by
operator div in Eq. (6). The existence of δ (φ) leads to
some differences between our terms and the processing

objects of AOS. Fortunately, Chan et al. indicated that
δε (φ) could be replaced by |∇φ|. Moreover, in the re-
striction on signed distance function, we have |∇φ| = 1;
thus, our equation will be an appropriate object that can
be handled by AOS. The first term on the right side of
Eq. (6) has no relation with the gradient of the level set
function and can thus be treated as a constant. In our
previous work, we gave the AOS scheme for the terms
marked by operator div[11].

A direct implementation of Eq. (6) involves the re-
estimation of the level set function at all pixels and not
simply the zero level set corresponding to the current
front. This front propagation method is computationally
expensive because of the large amount of useless calcula-
tions that has to be performed for the pixels during the
front propagation. In order to overcome this drawback, a
narrow band approach which is initially proposed[12] and
extensively analyzed and optimized[13] is proposed. The
key idea is to deal only with the pixels close to the latest
position of the zero level set in both directions (inwards
and outwards). As the curve evolution is performed
smoothly according to the Euler-Lagrange equation, the
use of pixels far from the current contour does not affect
the evolution. Therefore, only pixels close to the current
contour are considered. A set of narrow band pixels
is defined around the current contour and the level set
function is updated only within this band.

 

Fig. 1. (Color online) Narrow band example. (a) A level set function (signed distance function) matrix, (b) 3D expression of
(a), and (c) narrow band region.
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The narrow band algorithm we employ in this letter
to update our level set function consists of the following
steps:

(1) Check whether the current level set function is
a signed distance function. If it is a signed distance
function, then go to the next step; otherwise, stop the
execution.

(2) Set the half-width parameter K of the narrow band
and search for the coordinates satisfying the condition
−K 6 LSF 6 K. These coordinates make up our narrow
band pixels.

(3) According to the specified Euler-Lagrange equa-
tion, update the level set function in a small range of
narrow band pixels.

(4) When the level set function changes, repeat steps
(1) to (3).

(5) When the convergence condition is met, end the
iteration process.

In this letter, we take a level set function as our ex-
ample to explain the narrow band approach, as shown
in Fig. 1. Figure 1(a) is a level set function (signed
distance function with size equal to 20 × 20 pixels) ma-
trix, (b) the three-dimensional (3D) expression of (a),
and (c) the narrow band region. The blue pixels denote
the inner points of the narrow band, the green pixels the
outer points, and the red pixels denote the zero level sets
corresponding to the current level set function, which to-
gether constitute the current narrow band pixels. When
we update the current level set function, we only need to
deal with the narrow band pixel values while the remain-
ing positions (pixels shown in gray) remain unchanged.

Fig. 2. Comparison of our model with four other models
on two real infrared images. The controlling parameters of
our model are selected as: α = 1, β = 30, µ = 1, and
ξ = 0.00001 × 255 × 255.

Then we evaluate the performance of our method on
real infrared target images. The experiments are im-
plemented through Matlab R2008a on a computer with
Intel Core 2 Duo 2-GHz central processing unit (CPU),
2-G random access nemory (RAM), and Windows XP
operating system. In the following experiments, we use
some default settings for partial parameters: λ1 = 1,
λ2 = 1, ∆t = 0.1 (the time step). Only the length pa-
rameter, ξ, which has a scaling role, is not the same in
all experiments. If we have to detect all or as many tar-
gets as possible and of any size, then ξ should be small.
If we have to detect only larger targets and not detect
smaller objects, then ξ has to be larger. We thus give the
exact value of ξ each time, together with the controlling
parameters α, β, and µ.

Figure 2 compares the detection performance of the
Chan-Vese model, the GAC model, the method by Zhang
et al.

[14,15], and our model on two real infrared images,
which include some rather weak boundaries. Moreover,
significant intensity variations also exist in these infrared
images. Figures 2(a) and (b) are the original input im-
ages, the sizes of which are 118×93 and 310×316 pixels,
respectively. Figures 2(c) and (d) show the initial curves.
Figures 2(e) and (f) show the results by the Chan-Vese
model. An over-detection phenomenon at the upper part
of the image can be seen from Fig. 2(e), whereas Fig.
2(f) includes some false alarms. Figures 2(g) and (h)
show the results by the GAC model. We can see from
Fig. 2(h) that the evolution process ignores the weak re-
gion directly because this model relies on local gradient
information alone. Figures 2(i) and (j) show the results
using the method of Zhang et al.

[14,15]. The results from
the two methods indicate a mass of false alarms. Figures
2(m) and (n) show the results from our method. The
results shown in Figs. 2(g) and (m) are almost the same.
However, a closer inspection of the results indicates a
distinction between the proposed model and the GAC
model. Taking the bottom of the right wheel as an ex-
ample, we can see that the GAC model does not detect
the fuzzy part of the bottom of the right wheel, yet our
approach achieves very good results. We can clearly see
an improvement from the zoomed view of Fig. 3. Thus,
compared with the other methods mentioned here, our
method obtains the best detection result because our
approach takes into account the edge and region infor-
mation of the image simultaneously.

Quantitatively, we use a popular measure called the
Dice coefficient[16] to compare the final detection re-
sults obtained by the four methods. Given two target
regions Ω1 and Ω2 from two different algorithms, the
Dice coefficient is defined as

Fig. 3. Zoomed view of the fuzzy part of the bottom of the
right wheel.
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Table 1. Performance Comparison of Several Detection Methods

Detection Methods
Chan-Vese GA Method of Method of the Proposed

Model Model Zhang et al.[14] Zhang et al.[15] Method

Metrics Fig. 2(a) Fig. 2(b) Fig. 2(a) Fig. 2(b) Fig. 2(a) Fig. 2(b) Fig. 2(a) Fig. 2(b) Fig. 2(a) Fig. 2(b)

dv 0.8723 0.6570 0.9345 0.8378 0.5285 0.1451 0.8605 0.9079 0.9905 0.9693

Number of Iterations 82 250 30 85 35 50 70 200 11 18

Total CPU Times (s) 45.1902 137.7854 65.9280 186.7925 11.2893 62.5065 17.6355 98.6552 0.8911 4.3172

dv(Ω1, Ω2) =
2Area(Ω1 ∩ Ω2)

Area(Ω1) + Area(Ω2)
. (7)

The Dice coefficient varies from 0 to 1, and it mea-
sures the degree of agreement between the two detected
regions. It is 1 when the two regions are identical and 0
when they are completely different. We record the Dice
coefficients of the five different methods in Table 1.

In addition, to demonstrate the superiority of our
method in terms of evolution velocity, we provide the
number of iterations and total CPU time (unit: s) for
each of the methods described in Fig. 2, as shown in Ta-
ble 1. Based on Table 1, our method achieves the fastest
evolution process (with the smallest CPU time) and the
highest dv value. Thus, our model clearly achieves the
most accurate detection results.

Figuer 4 presents the results for another set of real-
world images. The first row shows the result for a B29
plane image. The contour is placed across the two planes.
For this image, we use the parameters α = 1, β = 10,
µ = 1, and ξ = 0.000125 × 255 × 255. The image in
the second row is corrupted by intensity homogeneity
due to nonuniform infrared thermal radiation, which is
often seen in the infrared imaging of a sea surface target.
New contours can emerge during the evolution to extract
multiple object boundaries. For this image, we set α = 1,
β = 11, µ = 1, and ξ = 0.000016× 255 × 255 as the pa-
rameters. The third row shows the result for a dark ship
target under sea background. The fact that the dark ship

Fig. 4. Results of our method for real infrared images. The
curve evolution process from the initial contour (in the first
column) to the final contour (in the third column) is shown
in every row for the corresponding image. The CPU time for
the first row is 0.8073 s; 2.3168 s for the second row; and
2.1104 s for the third row.

target is surrounded by the highly cluttered background
with numerous sun-glints can be seen clearly. This makes
it difficult to recover the whole object boundary if it re-
lies on local gradient or global image information alone.
Nevertheless, our method successfully extracts the object
boundaries. In this case, we choose α = 1, β = 5, µ = 1,
and ξ = 0.000003× 255 × 255 as the parameters.

In conclusion, a hybrid model that integrates the re-
gion and edge information while solving the efficient AOS
scheme is presented. The experimental results show that
the proposed method can improve detection performance
effectively in terms of the number of iterations and the
wasted CPU time.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 60736010.
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